Create a track from tidy_cpgs files

gpatterns.import_from_tidy_cpgs(tidy_cpgs, track, description, steps = "all",
  overwrite = TRUE, cov_filt_cmd = NULL, dsn = NULL, pat_cov_lens = c(3,
  5, 7), max_span = 500, pat_freq_len = 2, nbins = nrow(gintervals.all()),
  groot = GROOT, use_sge = FALSE, max_jobs = 400,
  parallel = getOption("gpatterns.parallel"))

Arguments

tidy_cpgs
tidy_cpgs data frame or a vector with directories of tidy_cpgs (use full path)
track
name of the track to generate
description
description of the track to generate
steps
steps of the pipeline. Possible options are: 'bind_tidy_cpgs', 'pileup', 'pat_freq', 'pat_cov'
overwrite
overwrite existing tracks
cov_filt_cmd
if numeric - maximal coverage for CpG. Else - command for filtering highly (or lowly) covered CpGs. string with the maximal coverage, where 'covs' can represent the command, e.g. 'max(500, quantile(covs, 0.95))'.
dsn
downsampling n. Leave NULL for no downsampling
pat_cov_lens
lengthes of patterns to calculate pattern coverage track for
max_span
maximal span to look for patterns (usually the maximal insert length)
pat_freq_len
lengthes of patterns to calculate pattern frequency track
nbins
number of genomic bins to separate the analysis.
groot
root of misha genomic database to save the tracks
use_sge
use sun grid engine for parallelization
max_jobs
maximal number of jobs for sge parallelization
parallel
parallelize using threads (number of threads is determined by gpatterns.set_parallel)