Skip to contents

This function normalizes an energy matrix by applying logarithmic transformation and scaling.

Usage

norm_energy_matrix(x, dataset_x, min_energy = -7, q = 1, norm_energy_max = 10)

Arguments

x

The input matrix to be normalized.

dataset_x

The reference dataset matrix used for normalization.

min_energy

The minimum energy value to be assigned after normalization. Default is -7.

q

The quantile value used for calculating the maximum value in the reference dataset. Default is 1.

norm_energy_max

The maximum value to which the normalized energy values are scaled. Default is 10.

Value

A normalized energy matrix with the same dimensions as the input matrix.

Examples

# Example usage:
data <- matrix(rnorm(100), nrow = 10)
normalized_data <- norm_energy_matrix(data, data, min_energy = -7, q = 1, norm_energy_max = 10)
#> Warning: no non-missing arguments to max; returning -Inf