Load a multiple motif regression model from a file
load_multi_regression.Rd
Load a multiple motif regression model from a file
Usage
load_multi_regression(
fn,
response = NULL,
sequences = NULL,
motif_dataset = all_motif_datasets(),
parallel = getOption("prego.parallel", FALSE),
alternative = "two.sided"
)
Arguments
- fn
file name or a list with the model
- response
A matrix of response variables - number of rows should equal the number of sequences
- sequences
A vector of DNA sequences ('A', 'T', 'C' or 'G'. Will go through
toupper
). Please make sure that the sequences are long enough to coverspat_num_bins
*spat_bin_size
bp, and that they are centered around the motif/signal.- motif_dataset
a data frame with PSSMs ('A', 'C', 'G' and 'T' columns), with an additional column 'motif' containing the motif name, for example
HOMER_motifs
,JASPAR_motifs
or all_motif_datasets(). By default all_motif_datasets() would be used.- parallel
whether to run optimization in parallel. use
set_parallel
to set the number of cores to use.- alternative
alternative hypothesis for the p-value calculation when using
ks.test
. One of "two.sided", "less" or "greater".
Value
a list with the following elements:
- models:
a list of models.
- model:
the combined model.
- spat_min:
the minimum spatial position.
- spat_max:
the maximum spatial position.
- bidirect:
whether the model is bidirectional.
- spat_bin_size:
the spatial bin size.
- seq_length:
the sequence length.
- motif_num:
the number of motifs.
- predict:
a function to predict the response.
- predict_multi:
a function to predict the response for each motif.
Examples
if (FALSE) { # \dontrun{
res_multi <- regress_pwm(cluster_sequences_example, cluster_mat_example[, 1],
final_metric = "ks", spat_bin_size = 40,
spat_num_bins = 7,
motif_num = 2
)
tmp <- tempfile()
res_multi$export(tmp)
r <- load_multi_regression(tmp)
} # }