Skip to contents

This function takes a matrix or dataframe of features, removes columns that are entirely NA, and then applies three logistic transformations to each column. Each transformed set of features is appended with suffixes "_early", "_linear", or "_late" to differentiate between them. The resulting matrix combines all transformed features.

Usage

create_logist_features(features)

Arguments

features

A matrix or dataframe where each column is a feature to be transformed.

Value

A matrix containing the transformed features with columns named according to the transformation applied (i.e., "_early", "_linear", or "_late").

See also

logist for the logistic transformation function.

Examples

# Create a sample matrix
sample_features <- matrix(rnorm(100), ncol = 5)
transformed_features <- create_logist_features(sample_features)
head(transformed_features)
#>      V1_high-energy V1_higher-energy V1_low-energy   V1_sigmoid V2_high-energy
#> [1,]    0.006669470     2.238974e-05  -0.336385193 0.0016587290    0.016886267
#> [2,]    0.015194518     1.172040e-04   0.063742721 0.0086228195    0.016027914
#> [3,]    0.003976017     7.935848e-06  -0.543645366 0.0005885478    0.006994522
#> [4,]    0.013348714     9.029132e-05  -0.001392821 0.0066559143    0.019299783
#> [5,]    0.018220130     1.690384e-04   0.154149501 0.0123893993    0.034055131
#> [6,]    0.023646487     2.862674e-04   0.279466150 0.0208039625    0.012753208
#>      V2_higher-energy V2_low-energy  V2_sigmoid V3_high-energy V3_higher-energy
#> [1,]     1.450009e-04    0.11650712 0.010646236    0.013859432     9.738224e-05
#> [2,]     1.305223e-04    0.09048961 0.009593319    0.009742111     4.791892e-05
#> [3,]     2.463337e-05   -0.31504444 0.001824645    0.013057593     8.637080e-05
#> [4,]     1.898699e-04    0.18238058 0.013895138    0.011813424     7.060768e-05
#> [5,]     5.999598e-04    0.43991567 0.042635577    0.016691842     1.416535e-04
#> [6,]     8.236589e-05   -0.02435646 0.006075209    0.052051866     1.427046e-03
#>      V3_low-energy  V3_sigmoid V4_high-energy V4_higher-energy V4_low-energy
#> [1,]    0.01750692 0.007174904    0.022796605     2.658336e-04    0.26230905
#> [2,]   -0.15843484 0.003543384    0.009617056     4.669075e-05   -0.16475654
#> [3,]   -0.01249058 0.006368738    0.023247253     2.765722e-04    0.27150521
#> [4,]   -0.06278815 0.005212428    0.011846275     7.100326e-05   -0.06139678
#> [5,]    0.11074320 0.010403007    0.007451298     2.796854e-05   -0.28617110
#> [6,]    0.59724554 0.095817799    0.008238755     3.421931e-05   -0.23923513
#>       V4_sigmoid V5_high-energy V5_higher-energy V5_low-energy  V5_sigmoid
#> [1,] 0.019347516     0.03466020     6.218445e-04     0.4471128 0.044122637
#> [2,] 0.003452878     0.02546449     3.325813e-04     0.3136587 0.024089208
#> [3,] 0.020113459     0.01940534     1.919727e-04     0.1850414 0.014046877
#> [4,] 0.005241478     0.01763976     1.583492e-04     0.1381667 0.011614992
#> [5,] 0.002071180     0.01019263     5.247696e-05    -0.1362124 0.003879132
#> [6,] 0.002532909     0.02320802     2.756287e-04     0.2707136 0.020046214